Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
HardwareX ; 12: e00341, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35936941

RESUMO

High-speed atomic force microscopes (HS-AFMs) with high temporal resolution enable dynamic phenomena to be visualized at nanoscale resolution. However, HS-AFMs are more complex and costlier than conventional AFMs, and particulars of an open-source HS-AFM controller have not been published before. These high entry barriers hinder the popularization of HS-AFMs in both academic and industrial applications. In addition, HS-AFMs generally have a small imaging area that limits the fields of implementation. This study presents an open-source controller that enables a low-cost simplified AFM to achieve a maximum tip-sample velocity of 5,093 µm/s (9.3 s/frame, 512 × 512 pixels), which is nearly 100 times higher than that of the original controller. Moreover, the proposed controller doubles the imaging area to 46.3 × 46.3 µm2 compared to that of the original system. The low-cost HS-AFM can successfully assess the severity of atopic dermatitis (AD) by measuring the nanotexture of human skin corneocytes in constant height DC mode. The open-source controller-based HS-AFM system costs less than $4,000, which provides resource-limited research institutes with affordable access to high-throughput nanoscale imaging to further expand the HS-AFM research community.

2.
ACS Sens ; 7(8): 2492, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35944159
3.
ACS Sens ; 3(7): 1222-1232, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29978699

RESUMO

The optical pickup unit (OPU) within a CD/DVD/Blu-ray drive integrates 780, 650, and 405 nm wavelength lasers, diffraction-limited optics, a high-bandwidth optoelectronic transducer up to 400 MHz, and a nanoresolution x-, z-axis, and tilt actuator in a compact size. In addition, the OPU is a remarkable piece of engineering and could enable different scientific applications such as sub-angstrom displacement sensing, micro- and nanoimaging, and nanolithography. Although off-the-shelf OPUs can be easily obtained, manufacturers protect their datasheets under nondisclosure agreements to impede their availability to the public. Thus, OPUs are black boxes that few people can use for research, and only experienced researchers can access all their functions. This review details the OPU mechanism and components. In addition, we explain how to utilize three commercially available triple-wavelength OPUs from scratch and optimize sensing quality. Then, we discuss scientific research using OPUs, from standard optical drive-based turnkey-biomarker array reading and OPU direct bioapplications (cytometry, optical tweezing, bioimaging) to modified OPU-based biosensing (DNA chip fluorescence scanning, biomolecular diagnostics). We conclude by presenting future trends on optical storage devices and potential applications. Hacking low-cost and high-performance OPUs may spread micro- and nanoscale biosensing research from research laboratories to citizen scientists around the globe.


Assuntos
Técnicas Biossensoriais/instrumentação , Animais , Técnicas de Cultura de Células/instrumentação , Discos Compactos , Desenho de Equipamento , Humanos , Microscopia de Força Atômica/instrumentação , Análise de Sequência com Séries de Oligonucleotídeos , Dispositivos Ópticos , Imagem Óptica/instrumentação , Pinças Ópticas , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...